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g HW grading

= 9 points is sufficient to get an A and additional points are for
A+
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“She just had a baby”
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= What can we learn from a wavefile?

No gaps between words (!)

Vowels are voiced, long, loud

Voicing: regular peaks in amplitude

When stops closed: no peaks, silence

Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
Fricatives like [sh]: intense irregular pattern; see .33 to .46
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Spectrograms
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Places of Articulation

oast-alyveolar/palatal

denté <\
| . ‘ velar
uvular

labial

pharynge

al
laryngeal/glottal

Ficure thanks to Jennifer Venditti



}fg Space of Phonemes

LABIAL CORONAL DORSAL RADICAL LARYNGEAL

Bilabial | 5201°, | Dental [Alveolar| 12/ [petroflex| Palatal | Velar | Uvular el | Clotal
Nasal m 1 n n n 1 N
Plosive pb|od td tdlcilkgl|lqec
fricative . | QB | Fv|00|sz|f3]|s57]|¢cd|[xy
Approximant 1b) 1 1 J
Trill B r
Tap, Flap A\ I [
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Lateral flap l

= Standard international phonetic alphabet (IPA) chart of consonants



Vowel Space

Front
Close 1
Near close
Close mid
Mid
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Near open

Open
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Vowels at right & left of bullets are rounded & unrounded.



E{i Seeing Formants: the Spectrogram
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Vowel Space

Front
Close 1
Near close
Close mid
Mid
Open mid
Near open

Open

Near front
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Vowels at right & left of bullets are rounded & unrounded.
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E& Pronunciation is Context Dependent

4000

3000

2000

1000

Hz

= [bab]: closure of lips lowers all formants: so rapid increase in all formants
at beginning of "bab"

= [dad]: first formant increases, but F2 and F3 slight fall

= [gag]: F2 and F3 come together: this is a characteristic of velars. Formant
transitions take longer in velars than in alveolars or labials

From Ladefoged “A Course in Phonetics”
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Dialect Issues

= Speech varies from dialect to dialect

(examples are American vs. British
English)
= Syntactic (“I could” vs. “I could
do”)
= Lexical (“elevator” vs. “lift”)
= Phonological
= Phonetic

Mismatch between training and
testing dialects can cause a large
increase in error rate

A erican British
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Why these Peaks? - ”H “Illlll”lhmnl’lm”

= Articulation process: N

= The vocal cord vibrations create 5 M\

harmonics
= The mouth is an amplifier :, | B s
= Depending on shape of mouth, v s 5 m‘

some harmonics are amplified A i |““|m|||||||"""“

more than others )

e
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E& Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms

| | Feature extraction for each frame:
| | 1) DFT (Spectrum)
\ 2) Log (Calibrate)

3) another DFT (Cepstrum)

4) 39 MFCC features

Figure: Simon Arnfield



E& Final Feature Vector

= 39 (real) features per 25 ms frame:

= 12 MFCC features o ltch purse
= 12 delta MFCC features °P :

= 12 delta-delta MFCC features 0 v o
= 1 (log) frame energy

[ o oB) Fame enerey U

1 delta-delta (log frame energy)

= So each frame is represented by a 39D vector
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Naive Solution:
Vector Quantisation



p 3 Vector Quantization

» |dea: discretization Codebook of 256

= Map MFCC vectors onto UL 5

. 3
d ISC I’ete Sym bOIS Input Feature Vector 4

(D
* Compute probabilities justby - TP GmER-
countin [
& (T 1 44 s 1 4
Compare to Codebook UM
==
= This is called vector (I

quantization or VQ
= Not used for ASR any more

= But: useful to consider as a
starting point

Output index



Hidden Markov Models



b3 Markov Chain: words

the future is independent of the past given the present



Markov Chain: weather

Q=q1q92...9N

A=a11a|2...a,,|...

n=m,Mn,....TN

a set of N states

a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state j, s.t.
Z'}zl ajj = 1 Vi

an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
Some states j may have 7; = 0, meaning that they cannot
be initial states. Also, Y\, 7 =1

From J&M



HMM

In real world many events are not

observable
= Speech recognition: we observe
acoustic features but not the phones
= POS tagging: we observe words but
not the POS tags

Markov Assumption: P(g;|q1...qi—1) = P(qilqi-1)

Output Independence: P(0i|q1-..qi,---,q7,01,---,0j,.

s % ,OT) e P(O,‘|q,')



}& Generative vs. Discriminative models

= Generative models specify a joint distribution over the labels
and the data. With this you could generate new data

Px,y)=Ply) Px|y)

= Discriminative models specify the conditional distribution of
the label y given the data x. These models focus on how to
discriminate between the classes

P(y | x)

From Bamman



HMM in Language Technologies

Part-of-speech tagging (Church, 1988; Brants, 2000)
Named entity recognition (Bikel et al., 1999) and other
information extraction tasks

Text chunking and shallow parsing (Ramshaw and Marcus,
1995)

Word alignment of parallel text (Vogel et al., 1996)
Acoustic models in speech recognition (emissions are
continuous)

Discourse segmentation (labeling parts of a document)



HMM example

|

P(1 | HOT) !
P2 |HOT) | = |
P(3 | HOT)

2
4
4

]

Markov Assumption: P(qi|q1...qi—1) = P(qi|qi-1)

Output Independence: P(0;|q1-..qi,---,qT,01,---,0j,. ..

B,

P(1| COLD) .
P2 |coLp)| = |.
P(3 | COLD) .

o
4
1

,or) = P(0i|qi)

From J&M



HMM

O=qi1q2...9N a set of N states

A=aynaiy...an...ay;  atransition probability matrix A, each a;; rep-
resenting the probability of moving from state i
to state j, s.t. D _ja;; =1 Vi

O =o0103...0T a sequence of 7" observations, each one drawn
from a vocabulary V = vy,vy,...,vy

B = b;(0;) a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state i

q0,9F a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agpjaq; - ..agp, out of the

start state and ajrarf .. .a,F Into the end state
From J&M



E& HMM Parameters

O=qi1q2...9N a set of N states

——> A=a11a12...ay1 ...ap,  a transition probability matrix A, each a;; rep-
resenting the probability of moving from state i
to state j, s.t. D _ja;; =1 Vi

O =o0103...0T a sequence of 7" observations, each one drawn
from a vocabulary V = vy,vy,...,vy
—> B =b(0;) a sequence of observation likelihoods, also

called emission probabilities, each expressing
the probability of an observation o; being gen-
erated from a state i

— 90:9F a special start state and end (final) state that are
not associated with observations, together with
transition probabilities agpjaq; - ..agp, out of the

start state and ajrarf .. .a,F Into the end state
From J&M



E& Types of HMMs

Bakis = left-to-right Ergodic =
fully-connected

=T many more From J&M



E& HMMs:Questions

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in
the 1960s, introduced the idea that hidden Markov models should be characterized
by three fundamental problems:

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).

Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

From J&M
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HMMs:Algorithms

Forward

Viterbi

Forward-Backward;
Baum-Welch

Problem 1 (Likelihood):
Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|1).

Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.

Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

From J&M



}& Likelihood Computation

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|1).

3 1 3

P(3 1 3,hot hot cold) = P(hot|start) x P(hot|hot) x P(cold|hot)
X P(3|hot) x P(1|hot) x P(3|cold)

P(313)=P(313,cold cold cold) + P(3 1 3,cold cold hot) + P(3 1 3,hot hot cold) + ...
P(HHC)=? P(313)=?

Complexity? From J&M



Forward Trellis

a1(2)=.32 a2(2)= .32*.12 + .02*.1 =.0404
PHIH)*PAIH) _ /)
%2 i \I-i : p(C//v 6*.2 @
q :(7/0) R /’/,
R o) 1) =.32*2 0225 069
> AN a,(1) =.32".2 + .02.25=_(
" Oy e 2 Peoyriie) @
- ’ <2gs O 575
e
o’
Q 3 1 3
0, 0, 03
>
t
N
04 (j) = P(01,02...01,q: = jIA) a(j) =3 ar-1(iaybj(or)
i=1
04—1(i)  the previous forward path probability from the previous time step
P ( 3 1 3 ) -9 aij the transition probability from previous state g; to current state g;
’ bj(or) the state observation likelihood of the observation symbol o; given

the current state j From J&M



Forward Algorithm

0p.o(N)

(O

a; »(3)
{d3
%.2(2)
{0y
a,,(1)

{9y )

Complexity?
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From J&M



E& Forward Algorithm

1. Initialization:
a1 (j) = agjbj(o1) 1<j<N

2. Recursion (since states 0 and F are non-emitting):

N
o (j) = Zat—l(i)aijbj(()t); I<j<N,I<t<T

3. Termination:



E& HMMs:Questions

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).
——> Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Problem 3 (Learning): Given an observation sequence O and the set of states

in the HMM, learn the HMM parameters A and B.

From J&M



Viterbi Trellis
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Viterbi Backt
ar n'\end ) i end ) i end )
V=32 __-"" 7T T=<__ v,)=max(.32".12,.02".08)=.038 | |
- -~ — ’l |‘
0  PHHPAH __ o\ S
q2 \\‘_//' _ > - p(c//v 6*.2 \\\\ 'I
- "p \\\ //’ |
P \ -3 x (7/ Y, e !
/// \ = C) N - #° H
> \ h
7 X \ - oatd v,(1) = max(.32".15; 0225) = .048 ;
l/ ) éq w v4(1)=.02 \\?\“\\Ou’ 9 s . ;
G i) o \___ P(CIC)* P(1IC) g o o
NN, o 5*5
-~ Q \Q\ N -
\ O S e e
\ \‘Q /
\ \'%(\ * & /
o 9 /
Q\ / PN TN PN
do @ ,’ i start ) | start ) .’\ start )
&




g Viterbi Algorithm

1. Initialization:

vi(j) = aojbj(o1) 1<j<N

2. Recursion (recall that states 0 and gr are non-emitting):

vi(j) = ml\éxvt—l(i)aijbj(Or); LLFE<NIN IS T

i=1

bt,(j) = argmaxv,_i(i)aijbj(o); 1<j<N,1<t<T

i=1
3. Termination:

N
The best score: Px =vr(qr) = malx vr (i) * air
1=

N
The start of backtrace: gr* = bty(qr) = argmax vy (i) *a;r
i=1



g Viterbi

= n-best decoding
= relationship to sequence alignment

Citation Field

Viterbi (1967) information theory
Vintsyuk (1968) speech processing

Needleman and Wunsch (1970) molecular biology

Sakoe and Chiba (1971) speech processing

Sankoff (1972) molecular biology

Reichert et al. (1973) molecular biology

Wagner and Fischer (1974) computer science



E& HMMs:Questions

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).
Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
—> Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.
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£ (i) = Otz(i)aijl;jT(?rq:l))ﬁerl(j)

Vt, i, and j

— 8{0;(0,+)

probability to transition from i toj at time t given O



ey 9 Ot

probability to being in state j at time t




Forward-Backward

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
’ oy (Jj j :
%(j) = ————————’O(é)(gtlg) Vit and j
. o (i)aiibi(o j : :
‘:t(l,]) — I() 1] ajf‘(fq;l))ﬁf%"l(]) vt’ i, and]
M-step
T-1
> &)
8y = T—tlzl

N

> &k

=1 k:l

Z % ()

~ t=l1s.t. O;=v,
bj(Vk) = - T —

> 1)
t=1

return A, B



Acoustic Model

S CoCorCarCo CorCorCo
Acoustic
. D @ @@ @@ @ ™
observations - —_—
"X

‘ . i

_*_., 13 _l_ B

AT b ]
aadldos i Liies 130

: 4

0.5 554 .79 LI LA L B S L L L TT T T T
1l | | | ! b iy |
R0 T
A AL SRR

5000

D R B S R e e




“speech lab”

ssssssssppppeeeeeeetshshshshIIIlaeaeaebbbbb

L § .
5000:_ _ .. vy L "<l. E ‘v

ot -




Lexicon

e © © ¢ )

\ p(“zero”) =/ 1Y
0 0 0 00 090 off)

5-8-8

b(“oh’”) 5







p 3 Vector Quantization

» |dea: discretization Codebook of 256

= Map MFCC vectors onto UL »

. 3
d ISC I’ete Sym bOIS Input Feature Vector 4

(D
* Compute probabilities justby TP GmER-
countin [
& (T 1 44 s 1 4
Compare to Codebook UMM
==
= This is called vector (I

quantization or VQ
= Not used for ASR any more

= But: useful to consider as a
starting point
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Fy (Hz)

Issues with Codebook
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% Gaussians for Acoustic Modeling

= P(x):
A Gaussian is parameterized by a mean and a variance:

Plaln,0) = 5= oxp (L5245 )

oV 21

P(x) is highest here at mean

P(x) P(x) is low here, far from mean

= let’s assume each MFCC feature has a normal distribution



p 3 Multivariate Gaussians

= Instead of a single mean p and variance 0

Plat.0) = 5oz exp (-85

oV 2w

= Vector of means p and covariance matrix 2

P(z|p, 2) = Goyergprs exp (—3(e — p) 127z — p))

= Usually assume diagonal covariance (!)
= This isn’t very true for FFT features, but is less bad for MFCC features



p 3 Gaussians: Size of X

* u=[00] u=1[00] u=1[00]
= 2= 2 = 0.6 2 =2

= As 2 becomes larger, Gaussian becomes more spread out; as 2 becomes
smaller, Gaussian more compressed

Text and ficures from Andrew Ng



o Gaussians: Shape of

= As we increase the off diagonal entries, more correlation between value of
x and value of y

Text and ficures from Andrew Ng



p 3 But we're not there yet

= Single Gaussians may do a bad job of

modeling a complex distribution in any
dimension

= Even worse for diagonal covariances

= Solution: mixtures of Gaussians

frequency of second formant/Hz

35001
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15001~
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| |
200 400 600 800 1000 1200 1400

frequency of first formant/Hz

From openlearn.open.ac.uk



b3 Mixtures of Gaussians

= Mixtures of Gaussians:

P(|pi, i) = Gayemsmre o (—3(@ — 1) 57 @ — )

P(CUl/L,Z,C) — Z@ CiP(ajm?ﬁZi)

(a) | | (b)

From robots.ox.ac.uk http://www.itee.uqg.edu.au/~comp4702
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2 State Tyin

@

= Creating CD phones: w388

= Start with h , do EM traini
art with monophone, do raining i // \\

= Clone Gaussians into triphones tiytn tiytg £yl i)
. . . . Y)Y 1Y) Y) YY) YY)
= Build decision tree and cluster Gaussians 000 000 (0 (P
. .
= Clone and train mixtures (GMMs) | | | |
3) . . )

= General idea:
» |Introduce complexity gradually |
(G}

= Interleave constraint with flexibility Dy cyme  fp v
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