Algorithms for NLP

Acoustic Models, HMM

Yulia Tsvetkov – CMU

Slides: Taylor Berg-Kirkpatrick – CMU/UCSD Dan Klein – UC Berkeley

HW grading

 9 points is sufficient to get an A and additional points are for A+

Acoustic Modeling

"She just had a baby"

What can we learn from a wavefile?

- No gaps between words (!)
- Vowels are voiced, long, loud
- Voicing: regular peaks in amplitude
- When stops closed: no peaks, silence
- Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
- Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
- Fricatives like [sh]: intense irregular pattern; see .33 to .46

Spectrograms

Spectrograms

time

1.6

Places of Articulation

Figure thanks to Jennifer Venditti

Space of Phonemes

	LABIAL		CORONAL			DORSAL			RADICAL		LARYNGEAL	
	Bilabial	Labio- dental	Dental	Alveolar	Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	СЭ	k g	q G		7	?
Fricative	φβ	f v	θð	s z	∫ 3	şζ	çj	хү	χ	ħ c	НС	h h
Approximant		υ		J		ન	j	щ	R R	1	1	11 11
Trill	В			r					R		Я	
Tap, Flap		V		ſ		r						
Lateral fricative				łţ		t	Х	Ł				
Lateral approximant				1		l	λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Seeing Formants: the Spectrogram

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Pronunciation is Context Dependent

- [bab]: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- [dad]: first formant increases, but F2 and F3 slight fall
- [gag]: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

Dialect Issues

- Speech varies from dialect to dialect (examples are American vs. British English)
 - Syntactic ("I could" vs. "I could do")
 - Lexical ("elevator" vs. "lift")
 - Phonological
 - Phonetic
- Mismatch between training and testing dialects can cause a large increase in error rate

Why these Peaks?

Articulation process:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

Frame Extraction

A frame (25 ms wide) extracted every 10 ms

Figure: Simon Arnfield

Final Feature Vector

- 39 (real) features per 25 ms frame:
 - 12 MFCC features
 - 12 delta MFCC features
 - 12 delta-delta MFCC features
 - 1 (log) frame energy
 - 1 delta (log) frame energy
 - 1 delta-delta (log frame energy)

So each frame is represented by a 39D vector

Acoustic Modeling

Speech Model

Acoustic Model

Naive Solution: Vector Quantisation

Vector Quantization

- Idea: discretization
 - Map MFCC vectors onto discrete symbols
 - Compute probabilities just by counting
- This is called vector quantization or VQ
- Not used for ASR any more
- But: useful to consider as a starting point

Hidden Markov Models

Markov Chain: words

the future is independent of the past given the present

Markov Chain: weather

$$Q = q_1 q_2 \dots q_N$$

a set of N states

$$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$$

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i$

$$\pi = \pi_1, \pi_2, ..., \pi_N$$

an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i. Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMM

- In real world many events are not observable
 - Speech recognition: we observe acoustic features but not the phones
 - POS tagging: we observe words but not the POS tags

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

Generative vs. Discriminative models

 Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$P(x,y) = P(y) P(x \mid y)$$

 Discriminative models specify the conditional distribution of the label y given the data x. These models focus on how to discriminate between the classes

$$P(y \mid x)$$

HMM in Language Technologies

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999) and other information extraction tasks
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment of parallel text (Vogel et al., 1996)
- Acoustic models in speech recognition (emissions are continuous)
- Discourse segmentation (labeling parts of a document)

HMM example

Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$

HMM

$Q=q_1q_2\ldots q_N$	a set of N states	
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t. $\sum_{j=1}^{n} a_{ij} = 1 \forall i$	
$O = o_1 o_2 \dots o_T$	a sequence of T observations , each one drawn from a vocabulary $V = v_1, v_2,, v_V$	
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probability of an observation o_t being generated from a state i	
q_0, q_F	a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{2F}a_{nF}$ into the end state	&M

HMM Parameters

Q =	q_1q_2 .	q_N
-----	------------	-------

a set of N states

 $\longrightarrow A = a_{11}a_{12} \dots a_{n1} \dots a_{nn}$

a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

 $O = o_1 o_2 \dots o_T$

a sequence of T observations, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$

 $B = b_i(o_t)$

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state i

 $\longrightarrow q_0, q_F$

a special **start state** and **end (final) state** that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

From J&M

Types of HMMs

Bakis = left-to-right

Ergodic = fully-connected

+ many more

HMMs:Questions

An influential tutorial by Rabiner (1989), based on tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov models should be characterized by **three fundamental problems**:

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence *O* and the set of states

in the HMM, learn the HMM parameters *A* and *B*.

HMMs:Algorithms

Forward

Viterbi

Forward-Backward; Baum-Welch Problem 1 (Likelihood):

Problem 2 (Decoding):

Problem 3 (Learning):

Given an HMM $\lambda = (A,B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

Likelihood Computation

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\lambda)$.

$$P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$

$$P(3\ 1\ 3) = P(3\ 1\ 3, \text{cold cold cold}) + P(3\ 1\ 3, \text{cold cold hot}) + P(3\ 1\ 3, \text{hot hot cold}) + \dots$$

Complexity?

Forward Trellis

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$$
 $\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i)a_{ij}b_j(o_t)$

 $a_{t-1}(i)$ the **previous forward path probability** from the previous time step the **transition probability** from previous state q_i to current state q_j the **state observation likelihood** of the observation symbol o_t given the current state j

P(313)=?

Forward Algorithm

Forward Algorithm

1. Initialization:

$$\alpha_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

2. Recursion (since states 0 and F are non-emitting):

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

$$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^N \alpha_T(i) a_{iF}$$

HMMs:Questions

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence *O* and the set of states

in the HMM, learn the HMM parameters *A* and *B*.

Viterbi Trellis

Viterbi Backtrace

Viterbi Algorithm

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^{N} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \underset{i=1}{\operatorname{argmax}} v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P* = v_T(q_F) = \max_{i=1}^N v_T(i) * a_{iF}$$

The start of backtrace: $q_T* = bt_T(q_F) = \underset{i=1}{\operatorname{max}} v_T(i) * a_{iF}$

Viterbi

- *n*-best decoding
- relationship to sequence alignment

Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968)	speech processing
Needleman and Wunsch (1970)	molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science

HMMs:Questions

Problem 1 (Likelihood): Given an HMM $\lambda = (A, B)$ and an observation se-

quence O, determine the likelihood $P(O|\lambda)$.

Problem 2 (Decoding): Given an observation sequence O and an HMM $\lambda =$

(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence *O* and the set of states

in the HMM, learn the HMM parameters *A* and *B*.

Backward

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}{\alpha_{T}(q_{F})} \forall t, i, \text{ and } j$$

$$s_{i}$$

$$a_{ij}b_{j}(o_{t+1})$$

$$o_{t+1}$$

$$o_{t+1}(i)$$

$$o_{t+2}(i)$$

probability to transition from i to j at time t given O

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \ \forall t \text{ and } j$$

probability to being in state *j* at time *t*

Forward-Backward

function FORWARD-BACKWARD(*observations* of len T, *output vocabulary* V, *hidden state set* Q) **returns** HMM=(A,B)

initialize A and B

iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{\alpha_T(q_F)} \,\,\forall \, t \,\,\text{and} \,\, j \\
\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(q_F)} \,\,\forall \, t, \,\, i, \,\, \text{and} \,\, j$$

M-step

$$\hat{a}_{ij} = rac{\sum\limits_{t=1}^{T-1} \xi_t(i,j)}{\sum\limits_{t=1}^{T-1} \sum\limits_{k=1}^{N} \xi_t(i,k)} \ \hat{b}_j(v_k) = rac{\sum\limits_{t=1s.t.O_t=v_k}^{T} \gamma_t(j)}{\sum\limits_{t=1}^{T} \gamma_t(j)}$$

return A, B

Acoustic Model

"speech lab"

sssssssppppeeeeeetshshshllllaeaeaebbbbb

Vector Quantization

- Idea: discretization
 - Map MFCC vectors onto discrete symbols
 - Compute probabilities just by counting
- This is called vector quantization or VQ
- Not used for ASR any more
- But: useful to consider as a starting point

Issues with Codebook

Gaussians for Acoustic Modeling

P(x):

A Gaussian is parameterized by a mean and a variance:

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

let's assume each MFCC feature has a normal distribution

Multivariate Gaussians

• Instead of a single mean μ and variance σ^2 :

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Vector of means μ and covariance matrix Σ

$$P(x|\mu,\Sigma) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right)$$

- Usually assume diagonal covariance (!)
 - This isn't very true for FFT features, but is less bad for MFCC features

Gaussians: Size of Σ

•
$$\mu = [0 \ 0]$$
 $\mu = [0 \ 0]$ $\mu = [0 \ 0]$

- $\Sigma = I$ $\Sigma = 0.6I$ $\Sigma = 2I$
- As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed

Gaussians: Shape of Σ

 As we increase the off diagonal entries, more correlation between value of x and value of y

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad .\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

But we're not there yet

 Single Gaussians may do a bad job of modeling a complex distribution in any dimension

- Even worse for diagonal covariances
- Solution: mixtures of Gaussians

Mixtures of Gaussians

• Mixtures of Gaussians:

$$P(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{k/2} |\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_i)^{\top} \Sigma_i^{-1}(x - \mu_i)\right)$$

$$P(x|\mu, \Sigma, \mathbf{c}) = \sum_{i} c_i P(x|\mu_i, \Sigma_i)$$

From robots.ox.ac.uk

http://www.itee.uq.edu.au/~comp4702

State Tying

Creating CD phones:

- Start with monophone, do EM training
- Clone Gaussians into triphones
- Build decision tree and cluster Gaussians
- Clone and train mixtures (GMMs)

General idea:

- Introduce complexity gradually
- Interleave constraint with flexibility

Acoustic Modeling

